
Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

CSE 390B, 2024 Winter
Building Academic Success Through Bottom-Up Computing

Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Cornell Note-taking & 
Machine Language

Cornell Note-taking Method, Machine Languages, Control 
Flow of Computer Instructions, The Hack Assembly Language



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Machine Languages 
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

2



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Recap: Bloom’s Taxonomy 

3

Remembering

Understanding

Applying

Analyzing

Creating

Evaluating

Recalling facts and basic concepts

Explaining ideas or concepts

Using information in a new (or similar) 
situation

Drawing connections among ideas

Justifying your decisions or position

Producing something new 



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Cornell Note Taking Method

4

NotesQuestions

Summary

I. Main Topic
○ Sub point
○ definition
○ example **

II. Object-Oriented Programming
○ Encapsulates the data 

and the operations for a 
given data type

○ Provides abstractions -
you don’t need to know 
how a car is implemented 
in order to use it 

○ Extensibility - easier to 
add new data types

III. Functional Programming
○ Extensibility - easier to 

add new operations

Compose a 
question that 
corresponds to 
the notes you 
took

In what ways is 
object-oriented 
programming 
more extensible 
than functional 
programming?

Object-oriented programming and functional 
programming are two types of programming 
paradigms… 



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Cornell Note Taking Method

5

NotesQuestions

Summary

I. Main Topic
○ Sub point
○ definition
○ example **

II. Object-Oriented Programming
○ Encapsulates the data 

and the operations for a 
given data type

○ Provides abstractions -
you don’t need to know 
how a car is implemented 
in order to use it 

○ Extensibility - easier to 
add new data types

III. Functional Programming
○ Extensibility - easier to 

add new operations

Compose a 
question that 
corresponds to 
the notes you 
took

In what ways is 
object-oriented 
programming 
more extensible 
than functional 
programming?

Object-oriented programming and functional 
programming are two types of programming 
paradigms… 



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Applying the Cornell Note-Taking Method

❖ Try it during today’s technical lecture!

❖ You will have a chance to reflect on your experience 
taking Cornell Notes in Project 4

6



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Machine Languages 
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

7



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Revisiting The Von Neumann Architecture

8

COMPUTER

MEMORY

(This picture will get more detailed as we go!)

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

PROGRAM

DATA



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Machine Code

❖ Instructions are stored in memory, so they must be able 
to be encoded in binary

❖ When we refer to machine code, we are typically talking 
about this binary representation of code

❖ Each instruction is a sequence of 0s and 1s
▪ Our computer / hardware specification is what gives meaning to 

each part of this sequence
▪ “Is this an add or subtract instruction? What are the inputs?”

9



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

(This picture will get more detailed as we go!)

Storing the Program

10

COMPUTER

MEMORY

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Assembly Languages

❖ Writing code using 0s and 1s is tedious and error prone

❖ Assembly languages are a human-readable format of 
binary instructions that a CPU runs

❖ Each human-readable assembly instruction has a 
corresponding binary machine code instruction
▪ Example: addq reg1, reg2 == 0b1011000101010100

❖ Assembly is often used as an intermediary between a 
high-level programming language and machine code

11



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Producing Machine Code

1212

MEMORY CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100) 
{
sum += arr[i];
i++;

}
Java

Load & Execute

Compile



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Producing Machine Code

1313

MEMORY CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100) 
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Producing Machine Code

1414

MEMORY CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100) 
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble

Compile



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Machine Language

❖ Specification of the Hardware / Software interface
▪ What operations are supported?
▪ What do they operate on?
▪ How is the program controlled?

❖ Usually in close correspondence with the hardware 
architecture
▪ Different specification for different hardware platforms

❖ Cost and Performance Tradeoffs
▪ Silicon area and complexity
▪ Time to complete instruction
▪ Power consumption

15



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Machine Operations

❖ Correspond to the operations supported by hardware:
▪ Arithmetic (+,	–)
▪ Logical (And, Or)
▪ Flow Control (“go to instruction n”, “if (condition) then go to 

instruction n”)

❖ Differences between machine languages:
▪ Instruction set richness (e.g., division? bulk copy?)
▪ Data types (e.g., word size, floating point)

16



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Registers

❖ CPU typically has a small number of 
registers
▪ Very efficient to access
▪ Used for intermediate, short-term 

“scratch work”

❖ Number and use of registers is a 
central part of any machine language

17

CPU

REGISTERS

17

CONTROL

0101110011100110rsp

0101110011100110reg2

0101110011100110D



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Addressing Modes

❖ “What locations can I specify in my assembly code?”

❖ Some useful options:
▪ Register

• add reg1, reg2
▪ Direct Memory Access

• add reg1, Memory[200]
▪ Indirect Memory Access

• add reg1, Memory[reg2]
▪ Immediate

• add 100, reg2

18

Access the giant array (i.e., 
memory) at index 200

Register names



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Machine Languages 
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

19



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Flow Control

20

COMPUTER

MEMORY

20

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

PC 1

Which instruction 
should execute 

next?



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Flow Control: Unconditional Jumps

❖ Usually, the CPU just executes machine instructions in a 
sequence
▪ Typically moves to the instruction with the next highest address

❖ Sometimes we want to always “jump” to another location
▪ Example: At the end of an infinite loop

21

High Level Code (similar to Java) Assembly Code

while (true) {
reg1++;
<more loop body>

}
<code after loop>

TOP:
add 1, reg1
<more loop body>
jmp TOP
<code after loop>



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Flow Control: Conditional Jumps

❖ Usually, the CPU just executes machine instructions in a 
sequence
▪ Typically moves to the instruction with the next highest address

❖ Sometimes we want to “jump” only if a condition is met
▪ Example: At the condition of an if statement

22

High Level Code (similar to Java) Assembly Code

if (reg1 < reg2) {
reg1++;

}
reg2++;

cmp reg1, reg2
jge SKIP
add 1, reg1

SKIP:
add 1, reg2



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Program Counter (PC)

❖ Memory is used to store data as well as code

❖ Instructions and operations are stored at different 
addresses in memory

❖ Program Counter in the CPU keeps track of which address 
contains the instruction that should be executed next

23

COMPUTER

MEMORY

Data and 
instructions

CPU

Program Counter 
(which line of code 
should I execute)



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs 

the instruction at address 24 in the code segment

24

Next cycle, replace 
counter value with in

(E.g., method calls)

Next cycle, add 1 to 
counter value

(E.g., normal operation)

Next cycle, set counter 
to 0

(E.g., program start)

PC

load

in

16

out

16

inc reset



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs 

the instruction at address 24 in the code segment

❖ Program counter specification:
if      (reset[t] == 1) out[t+1] = 0

else if (load[t] == 1)  out[t+1] = in[t]

else if (inc[t] == 1)   out[t+1] = out[t] + 1

else                    out[t+1] = out[t]

25

PC

load

in

16

out

16

inc reset



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Lecture Outline

❖ Cornell Note-taking Method
▪ System for Taking, Organizing, and Reviewing Notes

❖ Machine Languages 
▪ Assembly Languages, Producing Machine Code

❖ Control Flow of Computer Instructions
▪ Jumps in Assembly, The Program Counter

❖ The Hack Assembly Language
▪ Registers, A-Instructions, Symbols, & C-Instructions

26



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

The Hack Computer

❖ The hardware you 
will build
▪ 16-bit word size
▪ ROM: sequence of 

instructions
• ROM[0], RAM[1]…

▪ RAM: data sequence
• RAM[0], RAM[1]…

2727

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions, 

Read-Only)

1110001011111100

RAM
(16-bit Data, 
Read/Write)

1100101010010101
PC

A/M D



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

The Hack Machine Language

❖ Two types of 
instructions (16-bit)
▪ A-instructions load 

data
▪ C-instructions perform 

computations

❖ Program: sequence 
of instructions

2828

COMPUTER

MEMORY

KEYBOARD

CPU

REGISTERS

CONTROL
SCREEN

ROM
(16-bit Instructions, 

Read-Only)

1110001011111100

RAM
(16-bit Data, 
Read/Write)

1100101010010101
PC

A/M D



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: Control Flow

❖ Startup
▪ Hack instructions loaded into ROM
▪ Reset signal initializes computer state (instruction 0)

❖ Execution
▪ Usually, advance to next instruction each cycle
▪ On jump instruction, write a different address into the PC

29

0101110011100110
1011000101010100
1110001011111100
0101110101101110
0001011000111010
0010111011011001
0110111110101001
0001110010110110

ROM (Instructions)

0
1
2
3
4
5
6
7

...



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: Registers

❖ D Register: For storing Data

❖ A Register: For storing data and Addressing memory

❖ M “Register”: The 16-bit word in Memory currently being 
referenced by the address in A 

30

REGISTERS

A
108

D

RAM

1100101010010101

...
106
107
108
109
110
...

M



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: A-Instructions

❖ Syntax:

❖ value can either be:
▪ A non-negative decimal constant
▪ A symbol referring to a constant

❖ Semantics:
▪ Stores value in the A register

31

@value



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: A-Instructions

❖ Symbolic Syntax

▪ Loads a value into the A 
register

❖ Example:

32

❖ Binary Syntax

0000000000010101

Family:
A-Instruction

Value:
Binary 
encoding of 21

@value

A Register

0

D Register

0

A Register

21

D Register

0

...

@21

...



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: Symbols

❖ Symbols are simply an alias for some address
▪ Only in the symbolic code—don’t turn into a binary instruction
▪ Assembler converts use of that symbol to its value instead

❖ Example:

33

@3
D=0

(LOOP)  
@21
D=1
@LOOP

...

00
01

02
03
04

0000000000000011
1110101010010000
0000000000010101
1110111111010000
0000000000000010

...

00
01
02
03
04

Assemble

LOOP = 02



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: Built-In Symbols

❖ Using ( ) defines a symbol in ROM / Instructions
❖ Assembler knows a few built-in symbols in RAM / Data
❖ R0, R1, ..., R15: Correspond to addresses at the 

very beginning of RAM (0, 1, …, 15)
▪ “Virtual registers,” Useful to store variables

❖ SCREEN, KBD: Base of I/O Memory Maps
❖ Example:

34

A Register

0

D Register

0

A Register

3

D Register

0

...

@R3

...



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions

❖ Syntax: (dest and jump optional)
▪ dest is a combination of destination registers:

▪ comp is a computation:

▪ jump is an unconditional or conditional jump:

❖ Semantics:
▪ Computes value of comp
▪ Stores results in dest (if specified)
▪ If jump is specified and condition is true (by testing comp result), 

jump to instruction ROM[A]
35

dest = comp ; jump

M, D, MD, A, AM, AD, AMD

0, 1, -1, D, A, !D, !A, -D, -A, D+1, A+1, D-1, A-1, D+A, D-A, 
A-D, D&A, D|A, M, !M, -M, M+1, M-1, D+M, D-M, M-D, D&M, D|M

JGT, JEQ, JGE, JLT, JNE, JLE, JMP



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

36

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Jump:
Condition for 
jumping

Dest:
Where to store 
result

Comp:
ALU Operation (a bit chooses 
between A and M)

UnusedFamily:
C-Instruction



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

❖ Symbolic:

❖ Binary:

Hack: C-Instructions

37

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Jump:
Condition for 
jumping



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

38

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Chapter 4

Dest:
Where to store 
result



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions

❖ Symbolic:

❖ Binary:

39

dest = comp ; jump

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

Comp:
ALU Operation (a bit chooses 
between A and M)

Chapter 4 Important: just pattern 
matching text!
Cannot have “1+M”



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions Example

40

(EXAMPLE)

@55

D=A+1

00

01

A Register

55

D Register

56



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions Example

41

(EXAMPLE)

@55

D=A+1

@R2

M=D

00

01

02

03

RAM

0

1

2

?

?

56

...

A Register

55

D Register

56

A Register

2

D Register

56



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Hack: C-Instructions Example

42

(EXAMPLE)

@55

D=A+1

@R2

M=D

@EXAMPLE

D;JGT

00

01

02

03

04

05

RAM

0

1

2

?

?

56

...

A Register

0

D Register

56

(Will jump to instruction 0, since D > 0)

A Register

2

D Register

56

A Register

55

D Register

56



Lecture 7: Cornell Note-taking & Machine Language CSE 390B, 2024 Winter

Lecture 7 Reminders

❖ Lectures will be in CSE2 271 starting this Friday until the 
rest of the quarter

❖ Project 4 due this Friday (1/26) at 11:59pm

❖ Amy has office hours tomorrow at 1:30pm in CSE2 151
▪ Feel free to post your questions on the Ed board as well

❖ Midterm exam coming up in around two weeks (2/9) 
during lecture time
▪ More details to come, along with metacognitive strategies for 

preparing for exams
43


